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1. Introduction 

One recent development in graph theory, suggested by Lagarias and Saks, called 

pebbling, has been the subject of much research. It was first introduced into the 

literature by Chung [1], and has been developed by many others including Hulbert, 

who published a survey of graph pebbling [5]. There have been many developments 

since Hulbert's survey appeared. 
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Given a graph G, distribute k pebbles (indistinguishable markers) on its vertices in 

some configuration C. Specifically, a configuration on a graph G is a function from 

V(G) to N{0} representing an arrangement of pebbles on G. For our purposes, we 

will always assume that G is connected. A pebbling move (or pebbling step) is 

defined as the removal of two pebbles from some vertex and the placement of one of 

these pebbles on an adjacent vertex. Define the pebbling number, π(G), to be the 

minimum number of pebbles such that regardless of their initial configuration, it is 

possible to move to any root vertex v, a pebble by a sequence of pebbling moves. 

Implicit in this definition is the fact that if after moving to vertex v one desires to 

move to another root vertex, the pebbles reset to their original configuration. 

The domination cover pebbling [3] is the combination of two ideas cover pebbling [2] 

and domination [4]. This introduces a new graph invariant called the domination 

cover pebbling number, ψ(G). Recall that, a set of vertices D in G is a dominating set 

if every vertex in G is either in D or adjacent to a vertex of D. The cover pebbling 

number , λ(G), is defined as the minimum number of pebbles required such that given 

any initial configuration of at least  λ(G) pebbles, it is possible to make a series of 

pebbling moves to place at least one pebble on every vertex of G. The domination 

cover pebbling number of a graph G, proposed by A. Teguia, is the minimum number 

ψ(G) of pebbles required such that any initial configuration of at least ψ(G) pebbles 

can be transformed so that the set of vertices that contain pebbles form a dominating 

set of G. We have determined the domination cover pebbling number of the square of 

a path in [7]. In section 2, we determine the domination cover pebbling number for 

odd cycle lollipop. For this we use the following theorems: 

Theorem 1.1[3] For n≥3, 

( 1)
1 1 8

( ) 2 ,
7 2

n
n n

nP





 

   

        

where 

2 3 (mod3)n n nn       .               

▄ 
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2 3 (mod3)n n nn       .               

 ▄ 

From this theorem, we can derive the following : 
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Also, from this we have, 

1 12 2 2 3
( )

7 7

n n

nP
  

  . 

Theorem 1.2[3] Let Cm be a cycle on m vertices. Then the domination cover pebbling 

number is given by, 

                

1 1( ) ( ) | 1|| 1|, 2 2( 3)
( )

2 ( ) | 1|, 2 1( 2)

k k k k

m

k k

P P if m k k
C

P if m k k

   
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 

       
 

    
 

where 
12 (mod3) ( 1) 2 (mod3)k kk and k       .            

▄ 

2 Domination cover pebbling number for odd cycle lollipop 

Definition2.1 [6] For a pair of integers m≥3 and n≥2, let L(m,n) be the lollipop graph 

of order n+m-1 obtained from a cycle Cm by attaching a path of length n-1 to a vertex 

of the cycle.                

We will use the following labeling for the graphs Cm and Pn. 
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Theorem 1.2[3] Let Cm be a cycle on m vertices. Then the domination cover pebbling 

number is given by, 
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 

    
 

where 
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2 Domination cover pebbling number for odd cycle lollipop 

Definition2.1 [6] For a pair of integers m≥3 and n≥2, let L(m,n) be the lollipop graph 

of order n+m-1 obtained from a cycle Cm by attaching a path of length n-1 to a vertex 

of the cycle.                

We will use the following labeling for the graphs Cm and Pn. 
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Cm: v0 v1 v2 . . . vm-1 v0 (m≥3) and Pn: 
1 2 10 ...

np p pv v v v


(n≥2) 

If the cycle Cm in L(m,n) is odd, then L(m,n) is called odd cycle lollipop. Now, we 

proceed to find the domination cover pebbling number for L(3,n), where n≥2. 

Theorem 2.2 Let L(3,2) be a lollipop graph. Then ψ(L(3,2))=3. 

Proof: Consider the graph L(3,2). Put one pebble each on both v1 and v2. Clearly, we 

cannot cover dominate the vertex 
1pv . Thus, ψ(L(3,2))≥3. 

Now, consider the distribution of three pebbles on the vertices of L(3,2). 

Case1: C3 contains at least one pebble. 

If 
1pv contains one or more pebbles then we are done, since ψ(C3)=1. So, assume that 

1pv  contains zero pebbles. This implies that C3 contains all the three pebbles. Clearly, 

we are done if v0 contains a pebble. Otherwise either v1 or v2 contains at least two 

pebbles. From this we can send one pebble to v0 and we are done. 

Case2: C3 contains zero pebbles. 

This implies that 
1pv  contains all the three pebbles, and from this vertex we can send 

one pebble to v0 and we are done. 

Thus, from Case1 and Case2, ψ(L(3,2)≤3. 

Therefore, ψ(L(3,2))=3.              

▄ 

Here after we use the following notations: consider the paths PA: v0 v1 v2… vk-2 and 

PB: vk+1 vk+2… vm-1v0 belonging to the cycle Cm, where m = 2k-1. Let ˆ ( )if v be the 

number of pebbles at the vertex vi and ˆ ( )Af P be the number of pebbles on the path 

PA. 

Cm: v0 v1 v2 . . . vm-1 v0 (m≥3) and Pn: 
1 2 10 ...

np p pv v v v


(n≥2) 

If the cycle Cm in L(m,n) is odd, then L(m,n) is called odd cycle lollipop. Now, we 

proceed to find the domination cover pebbling number for L(3,n), where n≥2. 

Theorem 2.2 Let L(3,2) be a lollipop graph. Then ψ(L(3,2))=3. 

Proof: Consider the graph L(3,2). Put one pebble each on both v1 and v2. Clearly, we 

cannot cover dominate the vertex 
1pv . Thus, ψ(L(3,2))≥3. 

Now, consider the distribution of three pebbles on the vertices of L(3,2). 

Case1: C3 contains at least one pebble. 

If 
1pv contains one or more pebbles then we are done, since ψ(C3)=1. So, assume that 

1pv  contains zero pebbles. This implies that C3 contains all the three pebbles. Clearly, 

we are done if v0 contains a pebble. Otherwise either v1 or v2 contains at least two 

pebbles. From this we can send one pebble to v0 and we are done. 

Case2: C3 contains zero pebbles. 

This implies that 
1pv  contains all the three pebbles, and from this vertex we can send 

one pebble to v0 and we are done. 

Thus, from Case1 and Case2, ψ(L(3,2)≤3. 

Therefore, ψ(L(3,2))=3.              

▄ 

Here after we use the following notations: consider the paths PA: v0 v1 v2… vk-2 and 

PB: vk+1 vk+2… vm-1v0 belonging to the cycle Cm, where m = 2k-1. Let ˆ ( )if v be the 

number of pebbles at the vertex vi and ˆ ( )Af P be the number of pebbles on the path 

PA. 
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Consider the paths PC: 
1 2 1

...p p p
n

v v v


and PD: 
2 3 1

...p p p
n

v v v


. 

Theorem 2.3 Let L(3,n) be the lollipop graph, where n≥3 then, 

2 ( ) 1, 0 1
( (3, ))

2 ( ) 1, 2

n n

n n

P if or
L n

P if

 


 

 
 

 
 

where 2 (mod3)nn   . 

Proof: Consider the lollipop graph L(3,n), where n≥3 and 2 (mod3)nn   . 

Case1: Let αn=0.Then n≥5. 

Consider the distribution of one pebble on v1 and 2ψ(Pn)-1 pebbles on v2. Clearly, we 

cannot cover dominate at least one of the vertices of L(3,n). Thus, 

ψ(L(3,n))≥2ψ(Pn)+1. 

Now, consider the distribution of 2ψ(Pn)+1pebbles on the vertices of L(3,n).  

Case1.1: C3 contains at least one pebble. 

If PC contains ψ(Pn-1) or more pebbles then we are done, since ψ(C3)=1. So, assume 

that PC contains x< ψ(Pn-1) pebbles. This implies that C3 contains at least 2 ψ(Pn)+1-x 

pebbles. Suppose we cannot move ψ(Pn)-x pebbles to v0, then we must have, 

1 2
0

ˆ ˆ( ) ( )ˆ ( ) [ ( ) ] 1.
2 2

n

f v f v
f v P x

   
       
   

 

0 1 2

1ˆ ˆ ˆ, ( ) ( ( ) ( )) ( ) .
2

nThat is f v f v f v P x        ---- (1) 

To minimize the L.H.S of (1), it is sufficient to assume that 
0

ˆ ( ) 0f v  . That is, we 

may assume that all the pebbles are placed at v1 and v2. 
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From (1), we get 
1 2

ˆ ˆ( ) ( ) 2[ ( ) ]nf v f v P x      ---- (2) 

But, we have  
1 2

ˆ ˆ( ) ( ) 2 ( ) 1nf v f v P x         ---- (3) 

The inequality in (2) contradicts the inequality in (3). So we can send ψ(Pn)-x pebbles 

to v0 and we cover dominate the path Pn(using at most 2[ψ(Pn)-x] pebbles). Now C3 

contains at least, 2ψ(Pn)-x+1-[ 2(ψ(Pn)-x)]=x+1≥1 pebbles and we are done. 

Case1.2: C3 contains zero pebbles. 

This implies that PC contains 2ψ(Pn)+1 pebbles. We use at most 
12n
pebbles to put a 

pebble at v0 so that we cover dominate C3. Since 
1pv is also cover dominated by v0, 

we need ψ(Pn-2) pebbles in PD. But we have enough pebbles in PD, since αn=0 and  

2ψ(Pn)+1-
12n
=

1
12 1

2 1 2
7

n
n


 

  
 

1

2

2 5
( )

7

n

nP





  , and we are done. 

Case2: Let αn=1. Then n≥3. 

Consider the distribution of 2ψ(Pn) pebbles on 
1pn

v


. Clearly, we cannot cover 

dominate at least one of the vertices of L(3,n). Thus, ψ(L(3,n))≥2ψ(Pn)+1. 

Now, consider the distribution of 2ψ(Pn)+1pebbles on the vertices of L(3,n).  

Case2.1: C3 contains at least one pebble. 

If PC contains ψ(Pn-1) or more pebbles then we are done, since ψ(C3)=1. So, assume 

that PC contains x< ψ(Pn-1) pebbles. This implies that C3 contains at least 2 ψ(Pn)+1-x 

pebbles. Suppose we cannot move ψ(Pn)-x pebbles to v0, then we must have, 

1 2
0

ˆ ˆ( ) ( )ˆ ( ) [ ( ) ] 1.
2 2

n

f v f v
f v P x

   
       
   
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0 1 2

1ˆ ˆ ˆ, ( ) ( ( ) ( )) ( )
2

nThat is f v f v f v P x    .   ---- (4) 

To minimize the L.H.S of (4), it is sufficient to assume that
0

ˆ ( ) 0f v  . That is, we 

may assume that all the pebbles are at v1 and v2. 

From (4), we get 
1 2

ˆ ˆ( ) ( ) 2[ ( ) ]nf v f v P x   .   ---- (5) 

But, we have  
1 2

ˆ ˆ( ) ( ) 2 ( ) 1nf v f v P x    .    ---- (6) 

The inequality in (5) contradicts the inequality in (6). So we can send ψ(Pn)-x pebbles 

to v0 and we cover dominate the path Pn(using at most 2[ψ(Pn)-x] pebbles). Now C3 

contains at least, 2ψ(Pn)-x+1-[ 2(ψ(Pn)-x)]=x+1≥1 pebbles and we are done. 

Case2.2: C3 contains zero pebbles. 

This implies that PC contains 2ψ(Pn)+1 pebbles. We use at most 
12n
pebbles to put a 

pebble at v0 so that we cover dominate C3. Since 
1pv is also cover dominated by v0, 

we need ψ(Pn-2) pebbles in PD. But we have enough pebbles, since αn=1 and  

2ψ(Pn)+1-
12n
= 

1
12 2

2 1 2
7

n
n


 

  
 

1

2

2 3
( )

7

n

nP





  , and we are done. 

Case3 : Let αn=2. Then n≥4. 

Consider the distribution of 2ψ(Pn)-2 pebbles on 
1pn

v


. Clearly, we cannot cover 

dominate at least one of the vertices of L(3,n). Thus,  

ψ(L(3,n))≥2ψ(Pn)-1. 

Now, consider the distribution of 2ψ(Pn)-1pebbles on the vertices of L(3,n). 

Case3.1 : C3 contains at least one pebble. 

A.Lourdusamy and T.Mathivanan
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If PC contains ψ(Pn-1) or more pebbles then we are done, since ψ(C3)=1. So, assume 

that PC contains x< ψ(Pn-1) pebbles. This implies that C3 contains at least 2 ψ(Pn)-1-x 

pebbles. Suppose we cannot move ψ(Pn)-x pebbles to v0, then we must have, 

1 2
0

ˆ ˆ( ) ( )ˆ ( ) [ ( ) ] 1.
2 2

n

f v f v
f v P x

   
       
   

 

That is, 0 1 2

1ˆ ˆ ˆ( ) ( ( ) ( )) ( ) .
2

nf v f v f v P x         ---- (7) 

To minimize the L.H.S of (7), it is sufficient to assume that
0

ˆ ( ) 0f v  . That is, we 

may assume that all the pebbles are at v1 and v2. 

From (7), we get
1 2

ˆ ˆ( ) ( ) 2[ ( ) ].nf v f v P x      ---- (8) 

But, we have  
1 2

ˆ ˆ( ) ( ) 2 ( ) 1 .nf v f v P x        ---- (9) 

The inequality in (8) contradicts the inequality in (9). So we can send ψ(Pn)-x pebbles 

to v0 and we cover dominate the path Pn(using at most 2[ψ(Pn)-x] pebbles). Now C3 

contains at least, 2ψ(Pn)-x-1-[ 2(ψ(Pn)-x)]=x-1≥1 (x≥2) pebbles and we are done. 

Case3.2: C3 contains zero pebbles. 

This implies that PC contains 2ψ(Pn)-1 pebbles. We use at most 
12n
pebbles to put a 

pebble at v0 so that we cover dominate C3. Now we need ψ(Pn-2) pebbles in PD. But 

we have enough pebbles, since αn=2 and 2ψ(Pn)-1-
12n
= 

1
12 3

2 1 2
7

n
n


 

  
 

1

2

2 1
( )

7

n

nP





  , and we are done. 

Thus, from Case1, Case2 and Case3 we get, 

Domination Cover Pebbling Number for Odd Cycle Lollipop



43

2 ( ) 1, 0 1
( (3, ))

2 ( ) 1, 2

n n

n n

P if or
L n

P if

 


 

 
 

 
 

Therefore, 
2 ( ) 1, 0 1

( (3, )) .
2 ( ) 1, 2

n n

n n

P if or
L n

P if

 


 

 
 

 
           ▄ 

Next we proceed to find the domination cover pebbling number for L(m,2), where 

m=2k-1 (k≥3). 

Theorem2.4 Let L(m,2) be a lollipop graph where m=2k-1(k≥3) and 

2 (mod3)kk   .Then 
2 ( ), 0 2

( ( ,2))
2 ( ) 1, 1

m k

m k

C if or
L m

C if

 


 


 

 

. 

Proof: Consider the lollipop graph L(m,2), where m=2k-1(k≥3) and 

2 (mod3)kk   . 

Case1: Let αk=0. Then k≥5. 

Consider the distribution of 2ψ(Cm)-1 pebbles on 
1p

v , then clearly we cannot cover 

dominate at least one of the vertices of L(m,2). Thus, ( ( ,2)) 2 ( )mL m C  . 

Now, consider the distribution of 2ψ(Cm) pebbles on the vertices of L(m,2), where 

αk=0. 

Case1.1: Cm contains at least ψ(Cm) pebbles. 

If 
1p

v contains one or more pebbles then we are done (by our assumption). So, assume 

that 
1p

v contains zero pebbles. This implies that Cm contains 2ψ(Cm) pebbles.  

We have to send one pebble to v0, to cover dominate the vertex 
1p

v . Suppose we 

cannot send one pebble to v0. Then we must have, 
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1

2

ˆ ( )ˆ ( )
2

ˆ ( ) 2 1
2

k
k

k

A

f v
f v

f P





  
  

    
 
 
  

 

and     

1

2

ˆ ( )ˆ ( )
2

ˆ ( ) 2 1.
2

k
k

k

B

f v
f v

f P





  
  

    
 
 
  

 

Adding the above inequalities, we get 

1
1

1

ˆ ˆ( ) ( )ˆ ˆ( ) ( )
2 2

ˆ ˆ( ) ( ) 2 2.
2 2

k k
k k

k

A B

f v f v
f v f v

f P f P






      
       

          
   
   
      

  

 ---- (10) 

To minimize the L.H.S of (10), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . 

That is, we may assume that all the pebbles are at vk-1and vk.Now, 2ψ(Cm) is even, so 

both 1
ˆ ˆ( ) ( )k kf v and f v are either odd or even. 

Subcase1 (a): Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are odd. 

 From (10), we get 

1
1

1

ˆ ˆ( ) ( )ˆ ˆ( ) ( )
2 2

2 2
2 2

k k
k k

k

f v f v
f v f v 





      
       

        
   
   
      

. 
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That is, 

1
1

1

ˆ ˆ( ) 1 ( ) 1ˆ ˆ( ( ) 1) ( ( ) 1)
2 2

2 2
2 2

k k
k k

k

f v f v
f v f v 





    
      

      . 

That is,
1

1

3 ˆ ˆ( ) ( ) 2 2 2
4

k

k kf v f v 


    
 

.   ---- (11) 

But, we have, 1
ˆ ˆ( ) ( ) 2 ( )k k mf v f v C    

 
1

2 2 ( ) | 1| , 2 1

2 1
4 2, 0

7

k k

k

k

P since m k

since

 




    

 
   

 

 

    

14(2 ) 18

7

k 
 . 

That is, 1
ˆ ˆ( ) ( )k kf v f v    

8(2 1) 10

7

k  
. 

Thus, 

  1

3 3 8(2 1) 10 2 4ˆ ˆ( ) ( ) 2 2 6
4 4 7 7

k k

k kf v f v

     
       

   
 

12k  , since k≥5.     ---- (12) 

The inequality in (11) contradicts the inequality in (12). 

 Subcase1 (b): Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are even. 

From (10), we get 

1
1

1

ˆ ˆ( ) ( )ˆ ˆ( ) ( )
2 2

2 2
2 2

k k
k k

k

f v f v
f v f v 





      
       

        
   
   
      

. 
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That is, 
1

1

3 ˆ ˆ( ) ( ) 2 1
4

k

k kf v f v 


   
 

.     ---- (13) 

But, we have, 1
ˆ ˆ( ) ( ) 2 ( )k k mf v f v C   and since m=2k-1 and αk=0, we get 

  1

3 3 8(2 1) 10ˆ ˆ( ) ( )
4 4 7

k

k kf v f v

  
   

 
 

12k  , since k≥5.     ---- (14) 

The inequality in (13) contradicts the inequality in (14). 

From the Subcase1 (a) and Subcase1 (b) , we can send one pebble to v0 using at most 

2
k-1

 pebbles.  

Now, the minimum number of pebbles that Cm contains is  

2ψ(Cm)-2
k-1

1
12 1

( ) 2 1 2
7

k
k

mC



  

     
  

 

12 9
( )

7

( ),

k

m

m

C

C





 
   

 



 

where the first equality follows since m=2k-1 and αk=0 and the third inequality 

follows since k≥5. Thus, we have enough pebbles to cover dominate Cm and we are 

done. 

Case1.2 :  Cm contains x<ψ(Cm) pebbles. 

This implies that, 
1p

v contains at least 2ψ(Cm) –x pebbles. We can send ψ(Cm)- 

2

x 
 
 

pebbles to v0. So, Cm contains at least x+ ψ(Cm)- 
2

x 
 
 

 ≥ψ(Cm) pebbles and we 

are done. 
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Case2 : Let αk=2. Then k≥4. 

Consider the distribution of 2ψ(Cm)-1 pebbles on 
1p

v , then clearly we cannot cover 

dominate at least one of the vertices of L(m,2). Thus, ( ( ,2)) 2 ( )mL m C  . 

Now, consider the distribution of 2ψ(Cm) pebbles on the vertices of L(m,2), where 

αk=2. 

Case2.1 : Cm contains at least ψ(Cm) pebbles. 

If 
1p

v contains one or more pebbles then we are done (by our assumption). So, 

assume that 
1p

v contains zero pebbles. This implies that Cm contains 2ψ(Cm) pebbles. 

We have to send one pebble to v0, to cover dominate the vertex 
1p

v . Suppose we 

cannot send one pebble to v0. Then we must have, 

1
1

1

ˆ ˆ( ) ( )ˆ ˆ( ) ( )
2 2

ˆ ˆ( ) ( ) 2 2
2 2

k k
k k

k

A B

f v f v
f v f v

f P f P






      
       

          
   
   
      

.  

 ---- (15) 

To minimize the L.H.S of (15), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . 

That is, we may assume that all the pebbles are at vk-1and vk. Now, 2ψ(Cm) is even, so 

both 1
ˆ ˆ( ) ( )k kf v and f v are either odd or even. 

Subcase2 (a) : Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are odd. 

 From (15), we get 
1

1

3 ˆ ˆ( ) ( ) 2 2 2.
4

k

k kf v f v 


    
 

   ---- (16) 

But, we have 1
ˆ ˆ( ) ( ) 2 ( )k k mf v f v C  

14(2 ) 2
.

7

k 
  
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But, we have 1
ˆ ˆ( ) ( ) 2 ( )k k mf v f v C  

14(2 ) 2
.

7

k 
  

That is, 1
ˆ ˆ( ) ( )k kf v f v    

4(2 ) 1
2

7

k 
 
 

. 

Thus,   1

3 3 4(2 ) 1ˆ ˆ( ) ( ) 2 2 2
4 4 7

k

k kf v f v

  
     

  
 

 
12k , since k≥4.             ---- (17) 

The inequality in (16) contradicts the inequality in (17). 

 Subcase2 (b): Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are even. 

From (15), we get  

   
1

1

3 ˆ ˆ( ) ( ) 2 1
4

k

k kf v f v 


   
 

.     ---- (18) 

But, we have, 1
ˆ ˆ( ) ( ) 2 ( )k k mf v f v C   and since m=2k-1 and αk=2, we get 

  1

3 3 4(2 ) 1ˆ ˆ( ) ( ) 2
4 4 7

k

k kf v f v

  
    

  
 

12k , since k≥4.     ---- (19) 

The inequality in (18) contradicts the inequality in (19). 

From the Subcase2 (a) and Subcase2 (b), we can send one pebble to v0 using at most 

2
k-1

 pebbles.  

Now, the minimum number of pebbles that Cm contains is 
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2ψ(Cm)-2
k-1

1
12 3

( ) 2 1 2 , 2 1 2
7

k
k

m kC since m k and 



  

        
  

 

( ), 4.mC since k   

Thus, we have enough pebbles to cover dominate Cm and we are done. 

Case2.2 : Cm contains x<ψ(Cm) pebbles.  

This implies that, 
1p

v contains at least 2ψ(Cm) –x pebbles. We can send ψ(Cm)- 

2

x 
 
 

pebbles to v0. So, Cm contains at least x+ ψ(Cm)- 
2

x 
 
 

 ≥ψ(Cm) pebbles and we 

are done. 

Case3: Let αk=1. Then k≥3. 

Consider the distribution of 2ψ(Cm) pebbles on 
1p

v . Then clearly we cannot cover 

dominate at least one of the vertices of L(m,2).  

Thus, ( ( ,2)) 2 ( )mL m C  +1. 

Now, consider the distribution of 2ψ(Cm)+1 pebbles on the vertices of L(m,2), where 

αk=1. 

Case3.1: Cm contains at least ψ(Cm) pebbles. 

If 
1p

v contains one or more pebbles then we are done (by our assumption). So, 

assume that 
1p

v contains zero pebbles. This implies that Cm contains 2ψ(Cm)+1 

pebbles. We have to send one pebble to v0, to cover dominate the vertex 
1p

v . 

Suppose we cannot send one pebble to v0. Then we must have, 
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1
1

1

ˆ ˆ( ) ( )ˆ ˆ( ) ( )
2 2

ˆ ˆ( ) ( ) 2 2
2 2

k k
k k

k

A B

f v f v
f v f v

f P f P






      
       

          
   
   
      

.  

 ---- (20) 

To minimize the L.H.S of (20), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . 

That is, we may assume that all the pebbles are at vk-1and vk. Now, 2ψ(Cm)+1 is odd, 

so exactly one of 1
ˆ ˆ( ) , ( )k kf v f v is even. Without loss of generality assume 

1
ˆ ( )kf v  is even. 

 From (20), we get  

  
1

1

3 5ˆ ˆ( ) ( ) 2 2
4 4

k

k kf v f v 


    
 

.    ---- (21) 

But, we have, 1
ˆ ˆ( ) ( ) 2 ( ) 1k k mf v f v C    . Then,  

  1

1

3 5ˆ ˆ( ) ( ) 2                                          ---- (22)
4 4

k

k kf v f v 

      

The inequality in (21) contradicts the inequality in (22). So, we can send one pebble 

to v0 using at most 2
k-1

 pebbles.  

Now, the minimum number of pebbles that Cm contains is  

2ψ(Cm)+1-2
k-1 ( ).mC  

Thus, we have enough pebbles to cover dominate Cm and we are done. 

Case3.2: Cm contains x<ψ(Cm) pebbles. 
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This implies that, 
1p

v contains at least 2ψ(Cm) –x pebbles. We can send ψ(Cm)- 

2

x 
 
 

pebbles to v0. So, Cm contains at least x+ ψ(Cm)- 
2

x 
 
 

 ≥ψ(Cm) pebbles and we 

are done. 

Thus, 
2 ( ), 0 2

( ( ,2)) .
2 ( ) 1, 1

m k

m k

C if or
L m

C if

 


 


 

 

 

Therefore, 
2 ( ), 0 2

( ( ,2)) .
2 ( ) 1, 1

m k

m k

C if or
L m

C if

 


 


 

 

  

where m=2k-1(k≥3) and k-2αk(mod 3).            ▄ 

 

Next, we proceed to find the domination cover pebbling number of  L(m,n), where 

m=2k-1 (k≥3) and n≥3. 

Theorem2.5 Let L(m,n) be a lollipop graph where m=2k-1 (k≥ 3) and n≥3. Then, 

1

1

1

2

2 ( ) ( ), 1
( ( , ))

2 ( ) ( ), 0 2

n

m n k

n

m n k

C P if
L m n

C P if or

  


  









  
 

 

 

where k-2 αk(mod 3). 

Proof: Consider the lollipop graph L(m,n), where m=2k-1(k≥3) and n≥3. 

Case1: Let αk=1. Then k≥3. 

Consider the distribution of ψ(L(m,n))-1pebbles at 
1pn

v


. Clearly, we cannot cover 

dominate at least one of the vertices of L(m,n).  

Thus, 
1

1( ( , )) 2 ( ) ( )n

m nL m n C P  

  . 

A.Lourdusamy and T.Mathivanan



52

Now, consider the distribution of ψ(L(m,n)) pebbles on the vertices of L(m,n). 

Case1.1: Cm contains at least ψ(Cm) pebbles. 

If PC contains ψ(Pn-1) pebbles are more, then clearly we are done(by our assumption). 

So assume that PC contains x< ψ(Pn-1) pebbles. This implies that, Cm contains 

1

12 ( ) ( )n

m nC P x 

  pebbles. Suppose, we cannot move ψ(Pn)-x pebbles to v0, 

then we must have, 

  
1

2

ˆ ( )ˆ ( )
2

ˆ ( ) 2 ( ) 1
2

k
k

k

A n

f v
f v

f P P x





  
  

     
 
 
  

 

 

1

2

ˆ ( )ˆ ( )
2

ˆ ( ) 2 ( ) 1.
2

k
k

k

B n

f v
f v

and f P P x





  
  

     
 
 
  

 

Adding the above inequalities, we get  

 

1

1

1

ˆ ( )ˆ ( )
2

ˆ ˆ( ) ( )
2

ˆ ( )ˆ ( )
2

2 ( ) 2. ---- (23)
2

k
k

A B

k
k

k

n

f v
f v

f P f P

f v
f v

P x







  
  

   
 
 
  

  
  

     
 
 
  
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To minimize the L.H.S of (23), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . 

That is, we may assume that all the pebbles are at vk and vk-1. 

Now, 
1

12 ( ) ( )n

m nC P x 

  is odd or even, since it depends on both  

ψ(Pn-1) and x. 

Subcase1 (a): Suppose, 1
ˆ ˆ( ) ( )k kf v f v  is even. 

This implies that, both 1
ˆ ˆ( ) ( )k kf v and f v are odd or even. Suppose, both 

1
ˆ ˆ( ) ( )k kf v and f v are odd, then from (23), we get  

 

1
1

1

ˆ ˆ( ) ( )ˆ ˆ( ) ( )
2 2

2 ( ) 2
2 2

k k
k k

k

n

f v f v
f v f v

P x






      
       

         
   
   
      

. 

That is,  1

1

3 ˆ ˆ( ) ( ) 2 2 ( ) 2.
4

k

k k nf v f v P x


     
 

         ---- (24) 

But, we have 
1

1 1
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

=  1

12 2 ( ) | 1| ( )n

k k nP P x  

   
 

12 2 2 2
2

7 7

k n
n x

  
   

 
, where the second equality follows since m=2k-1, 

and the third inequality follows since 

12 2
1 ( )

7

n

k nand P 
 

  . 

Then 

1

1

3 3 2 2 2 2 3 3ˆ ˆ( ) ( ) 2 2
4 4 7 7 4 2

k n
n

k kf v f v x




   
         

  
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13 2 (2 3) 3(2 ) 2 3 24

4 7 7 7 4 14

k n k n

x
 

     
 

 

2 3 3(2 ) 2 3 24
3(2 ) ( )

4 7 7 4 14

k n
k

nP x  
     

 
 

1
1 2

2 2

2 2 9(2 ) 3(2 ) 3 12
2 ( ) 2

7 4 728(2 ) 28(2 )

n k n
k k

n k k
P x


 

 

 
      

 
 

1
1 2 2 2 36 3(2 ) 3 12

2 ( ) 2
7 28(2) 28(2) 4 7

n n
k k

nP x


   
      

 
 

1 2 13(2 ) 52
2 ( ) 2 2

56

n
k k

nP x   
    

 
, 

where the third inequality follows since 

12 3
( )

7

n

nP
 

 . 

That is, 1

3 ˆ ˆ( ) ( ) 2
4

k kf v f v 
   
 

12 ( ) 2k

nP x   .   ---- (25) 

The inequality in (24) contradicts the inequality in (25). 

Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are even, then from (23), we get   

  

1
1

1

ˆ ˆ( ) ( )ˆ ˆ( ( ) 1) ( ( ) 1)
2 2

2 ( ) 2
2 2

k k
k k

k

n

f v f v
f v f v

P x






   
      

       . 

That is,   1

1

3 ˆ ˆ( ) ( ) 2 ( ) 1.
4

k

k k nf v f v P x


    
 

   ---- (26) 
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But, we have 
1

1 1
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

=  1

12 2 ( ) | 1| ( )n

k k nP P x  

   
 

12 2 2 2
2

7 7

k n
n x

  
   

 
, where the second equality follows since m=2k-1, 

and the third inequality follows since 

12 2
1 ( )

7

n

k nand P 
 

  . 

That is,   

1

1

3 3 2 2 2 2 3ˆ ˆ( ) ( ) 2
4 4 7 7 4

k n
n

k kf v f v x




   
       

  
 

1 2 13(2 ) 52
2 ( ) 2 2.

56

n
k k

nP x   
    

 
 

That is, 1

3 ˆ ˆ( ) ( )
4

k kf v f v 
  
 

 
12 ( ) 1k

nP x   .   ---- (27) 

The inequality in (26) contradicts the inequality in (27). 

Subcase1(b): If 1
ˆ ˆ( ) ( )k kf v f v  is odd. 

Without loss of generality, let ˆ ( )kf v be odd. Then 1
ˆ ( )kf v  is even. 

From (23), we get   

  

1
1

1

ˆ ˆ( ) 1 ( )ˆ ˆ( ( ) 1) ( ( ) 1)
2 2

2 ( ) 2
2 2

k k
k k

k

n

f v f v
f v f v

P x






   
      

       . 

That is,    1

1

3 5ˆ ˆ( ) ( ) 2 ( ) 2
4 4

k

k k nf v f v P x


     
 

.  ---- (28) 
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But, we have 
1

1 1
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

=  1

12 2 ( ) | 1| ( )n

k k nP P x  

      

12 2 2 2
2

7 7

k n
n x

  
   

 
, where the second equality follows since m=2k-1, 

and the third inequality follows since 

12 2
1 ( )

7

n

k nand P 
 

  . 

That is,    

1

1

3 5 3 2 2 2 2 3 5ˆ ˆ( ) ( ) 2
4 4 4 7 7 4 4

k n
n

k kf v f v x




   
         

  
 

1 2 13(2 ) 52
2 ( ) 2 2

56

n
k k

nP x   
    

 
. 

That is, 1

3 5ˆ ˆ( ) ( )
4 4

k kf v f v 
   
 

 
12 ( ) 2k

nP x   .  ---- (29) 

The inequality in (28) contradicts the inequality in (29). 

 From Subcase 1(a) and Subcase 1(b), we can always send ( )nP x  pebbles to v0 at 

a cost of at most 2
k-1

[ ( )nP x  ] pebbles. Thus, we cover dominate the path Pn. 

Now, we have to cover dominate Cm. In Cm, we have at least 

 1 1

12 ( ) ( ) 2 ( )n k

m n nC P x P x   

    pebbles. We need at most ψ(Cm) 

pebbles to cover dominate Cm. But,  

 1 1

12 ( ) ( ) 2 ( ) ( )n k

m n n mC P x P x C    

      

 1 1

1(2 1) ( ) ( ) 2 ( )n k

m n nC P x P x   

       

 1 1 1

1(2 1) 2 ( ) 2 ( ) ( ) (2 1)n k k

k n nP P P x    

       
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1 1
1 12(2 2) 2 3

(2 1) 2
7 7

k n
n k

 
     

     
   

  

1

1

4(2 ) 8 2(2 ) 3 4(2 ) 4
2

7 7(2 )

n n n
k

k





    
  

 
 

1 8(2 ) 4(2 ) 15
2

28

n n
k   

  
 

 

1 4(2 ) 15
2 0,

28

n
k  

  
 

 

where the second equality follows since m=2k-1, the third inequality follows since 

12 3
1 ( )

7

n

k nand P 
 

  , the fifth inequality follows since k≥3, and the sixth 

inequality follows 2 2since n and k  . 

Thus, we have enough pebbles to cover dominate Cm and hence we are done. 

Case1.2: Cm contains y<ψ(Cm) pebbles. 

This implies that, PC

 
contains

1

12 ( ) ( )n

m nC P y 

 
 
pebbles. We use at most 

ψ(Pn-1) pebbles to cover dominate PC. Thus, we have at least 
12 ( )n

mC y  pebbles 

in PC. We need at most 2
n-1 

[ψ(Cm)-y] pebbles from PC to cover the vertices of Cm. 

But,  

 1 12 ( ) 2 ( )n n

m mC y C y      

=
1(2 1)n y  >0,  

A.Lourdusamy and T.Mathivanan



58

where the second inequality follows since n>2. Thus, we can send ψ(Cm)-y pebbles to 

v0 and already Cm contains y pebbles implies that Cm contains ψ(Cm) pebbles and we 

are done. 

So, 
1

1( ( , )) 2 ( ) ( )n

m nL m n C P  

  . 

Therefore, 
1

1( ( , )) 2 ( ) ( )n

m nL m n C P  

  , if αk=1. 

Case2: Let αk=2. Then k≥4. 

Consider the distribution of ψ(L(m,n))-1pebbles at 
1pn

v


. Clearly, we cannot cover 

dominate at least one of the vertices of L(m,n).  

Thus, 
1

2( ( , )) 2 ( ) ( )n

m nL m n C P  

  . 

Now, consider the distribution of ψ(L(m,n)) pebbles on the vertices of L(m,n). 

Case2.1: Cm contains at least ψ(Cm) pebbles. 

If PC contains ψ(Pn-1) pebbles are more, then clearly we are done(by our assumption). 

So assume that PC contains x< ψ(Pn-1) pebbles. This implies that, Cm contains 

1

22 ( ) ( )n

m nC P x 

  pebbles. Suppose, we cannot move ψ(Pn)-x pebbles to v0, 

then we must have,  

1

ˆ ( )ˆ ( )
2

ˆ ˆ( ) ( )
2

k
k

A B

f v
f v

f P f P



  
  

   
 
 
  

 

 

1

1

ˆ ( )ˆ ( )
2

2 ( ) 2. ---- (30)
2

k
k

k

n

f v
f v

P x





  
  

     
 
 
  
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To minimize the L.H.S of (30), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . 

That is, we may assume that all the pebbles are at vk and vk-1. 

 Now, 
1

22 ( ) ( )n

m nC P x 

  is odd or even, since it depends on both  

ψ(Pn-2) and x. 

Subcase2 (a): Suppose, 1
ˆ ˆ( ) ( )k kf v f v  is even. 

This implies that, both 1
ˆ ˆ( ) ( )k kf v and f v are odd or even. Suppose, both 

1
ˆ ˆ( ) ( )k kf v and f v are odd, then 

 From (30), we get   

 1

1

3 ˆ ˆ( ) ( ) 2 2 ( ) 2.
4

k

k k nf v f v P x


     
 

  ---- (31) 

But, we have 
1

1 2
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

=  1

22 2 ( ) | 1| ( )n

k k nP P x  

     

1 12 3 1 2 2
2 ,

7 2 7

k n
n x

   
    

 
 

where the second equality follows since m=2k-1, and the third inequality follows 

since 

12 2
2 ( )

7

n

k nand P 
 

  . 

That is, 

1 1

1

3 3 2 3 1 2 2 3 3ˆ ˆ( ) ( ) 2 2
4 4 7 2 7 4 2

k n
n

k kf v f v x
 



   
          

  
 

1 2 3 3(2 ) 3
2 ( ) 2 ( ) 2

4 7 4

k
k k

n nP P x    
     

 
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1
1 2 2 2 3 12 3

2 ( ) 2 2
7 4 7 4

n
k k

nP x


     
      

  
 

12 ( ) 2,k

nP x    

where the second inequality follows 

12 3
( )

7

n

nsince P
 

 , and the fourth 

inequality follows 3 4.since n and k   

That is, 1

3 ˆ ˆ( ) ( ) 2
4

k kf v f v 
   
 

12 ( ) 2k

nP x   .   ---- (32) 

The inequality in (31) contradicts the inequality in (32). 

Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are even, then 

 From (30), we get   

 1

1

3 ˆ ˆ( ) ( ) 2 ( ) 1.
4

k

k k nf v f v P x


    
 

   ---- (33) 

But, we have 
1

1 2
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

1 12 3 1 2 2
2 ,

7 2 7

k n
n x

   
    

 
 

where the second inequality follows since 

12 2
2 ( )

7

n

k nand P 
 

  . 

That is,  

1 1

1

3 3 2 3 1 2 2 3ˆ ˆ( ) ( ) 2
4 4 7 2 7 4

k n
n

k kf v f v x
 



   
        

  
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1 2 3 3(2 )
2 ( ) 2 ( ) 1

4 7

k
k k

n nP P x    
     

 
 

1
1 2 2 2 3 12

2 ( ) 2 1
7 4 7

n
k k

nP x


     
      

  
 

12 ( ) 1,k

nP x    

where the second inequality follows since

12 3
( )

7

n

nP
 

 , and the fourth 

inequality follows 3 4.since n and k   

That is, 1

3 ˆ ˆ( ) ( )
4

k kf v f v 
  
 

12 ( ) 1k

nP x   .   ---- (34) 

The inequality in (33) contradicts the inequality in (34). 

Subcase2 (b): If 1
ˆ ˆ( ) ( )k kf v f v  is odd. 

Without loss of generality, let ˆ ( )kf v be odd. Then 1
ˆ ( )kf v  is even. 

From (30), we get   

 1

1

3 5ˆ ˆ( ) ( ) 2 ( ) 2
4 4

k

k k nf v f v P x


     
 

.  ---- (35) 

But, we have 
1

1 2
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

1 12 3 1 2 2
2 ,

7 2 7

k n
n x

   
    

 
 

where the second equality follows since m=2k-1, and the third inequality follows  
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since 

12 2
2 ( )

7

n

k nand P 
 

  . 

That is, 

1 1

1

3 5 3 2 3 1 2 2 3 5ˆ ˆ( ) ( ) 2
4 4 4 7 2 7 4 4

k n
n

k kf v f v x
 



   
          

  
 

1
1 2 2 11

2 ( ) 2 2
7

n
k k

nP x


   
    

 
. 

That is, 1

3 5ˆ ˆ( ) ( )
4 4

k kf v f v 
   
 

 
12 ( ) 2k

nP x   .  ---- (36) 

The inequality in (35) contradicts the inequality in (36). 

From Subcase2 (a) and Subcase2 (b), we can always send ( )nP x  pebbles to v0 at 

a cost of at most 2
k-1

[ ( )nP x  ] pebbles. Thus, we cover dominate the path Pn. 

Now, we have to cover dominate Cm. In Cm, we have at least 

 1 1

22 ( ) ( ) 2 ( )n k

m n nC P x P x   

    pebbles. We need at most ψ(Cm) 

pebbles to cover dominate Cm. But,  

 1 1

22 ( ) ( ) 2 ( ) ( )n k

m n n mC P x P x C    

      

 1 1 1

2(2 1) 2 ( ) 1 2 ( ) ( ) (2 1)n k k

k n nP P P x    

        

1 1
1 12(2 3) 2 3

(2 1) 1 2
7 7

k n
n k

 
     

      
   

 

1
1

1

4(2 ) 8 2(2 ) 3 2 1
2

7 7(2 )

n n n
k

k






    
  

 
 

1
1 31(2 ) 87

2 0,
56

n
k


  

  
 
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where the second equality follows since 

12 3
1 ( )

7

n

k nand P 
 

  , and the 

fourth inequality follows 2 3since n and k  . 

Thus, we have enough pebbles to cover dominate Cm and hence we are done. 

Case2.2: Cm contains y<ψ(Cm) pebbles. 

This implies that, PC contains 
1

22 ( ) ( )n

m nC P y 

 
 
pebbles. We use at most 

ψ(Pn-1) pebbles to cover dominate PC. Thus, we have at least 

1

2 12 ( ) ( ) ( )n

m n nC P y P  

    pebbles in PC. We need at most 2
n-1 

[ψ(Cm)-y] 

pebbles from PC to cover dominate the vertices of Cm. But,  

 1 1

2 12 ( ) ( ) ( ) 2 ( )n n

m n n mC P y P C y    

       

1
1 2 2 2 3

2
7 7

n n
n y y


  

     

1

1

5 7 1
2

7(4) 7

21 9
2 0 0,

28

n

n

y
y

y
if y





 
   

 

 
   

 

 

where the second inequality follows since n≥3. Thus, we can send ψ(Cm)-y pebbles to 

v0 and already Cm contains y pebbles implies that Cm contains ψ(Cm) pebbles and we 

are done. 

So, 
1

2( ( , )) 2 ( ) ( )n

m nL m n C P  

  . 

Therefore, 
1

2( ( , )) 2 ( ) ( )n

m nL m n C P  

  , if αk=2. 

Case3: Let αk=0. Then k≥5. 
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Consider the distribution of ψ(L(m,n))-1pebbles at 
1pn

v


. Clearly, we cannot cover 

dominate at least one of the vertices of L(m,n). 

Thus, 
1

2( ( , )) 2 ( ) ( )n

m nL m n C P  

  . 

Now, consider the distribution of ψ(L(m,n)) pebbles on the vertices of L(m,n). 

Case3.1 : Cm contains at least ψ(Cm) pebbles. 

If PC contains ψ(Pn-1) pebbles are more, then clearly we are done(by our assumption). 

So assume that PC contains x< ψ(Pn-1) pebbles. This implies that, Cm contains 

1

22 ( ) ( )n

m nC P x 

  pebbles. Suppose, we cannot move ψ(Pn)-x pebbles to v0, 

then we must have,  

1

ˆ ( )ˆ ( )
2

ˆ ˆ( ) ( )
2

k
k

A B

f v
f v

f P f P



  
  

   
 
 
  

 

 

1

1

ˆ ( )ˆ ( )
2

2 ( ) 2. ---- (37)
2

k
k

k

n

f v
f v

P x





  
  

     
 
 
  

  

To minimize the L.H.S of (37), it is sufficient to assume that ˆ ( )Af P =0= ˆ ( )Bf P . 

That is, we may assume that all the pebbles are at vk and vk-1. 

 Now, 
1

22 ( ) ( )n

m nC P x 

  is odd or even, since it depends on both  

ψ(Pn-2) and x. 
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Subcase3 (a) : Suppose, 1
ˆ ˆ( ) ( )k kf v f v  is even. 

This implies that, both 1
ˆ ˆ( ) ( )k kf v and f v are odd or even.  

Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are odd, then from (37), we get   

 1

1

3 ˆ ˆ( ) ( ) 2 2 ( ) 2.
4

k

k k nf v f v P x


     
 

  ---- (38) 

But, we have 
1

1 2
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

=  1

22 2 ( ) | 1| ( )n

k k nP P x  

     

1 1
1 2(2 1) 2 2

2 1 ,
7 7

k n
n x

 
   

    
 

 

where the second equality follows since m=2k-1, and the third inequality follows 

since 

12 2
2 ( )

7

n

k nand P 
 

  . 

That is, 

1 1

1

3 3 2 1 1 2 2 3 3ˆ ˆ( ) ( ) 2 2
4 4 7 2 7 4 2

k n
n

k kf v f v x
 



   
          

  
 

1
1 2 3 3(2 ) 8(2 ) 3

2 ( ) 2 ( ) 2
4 7 7 4

k n
k k

n nP P x 


   
      

 
 

1 1
1 2 2 2 3 12 8(2 ) 3

2 ( ) 2 2
7 4 7 7(8) 4

n n
k k

nP x
 

     
        

  
 

1 1
1 2 8(2 11) 8(2 ) 3

2 ( ) 2 2
7 4

n n
k k

nP x
 

    
    

 
 

Subcase3 (a) : Suppose, 1
ˆ ˆ( ) ( )k kf v f v  is even. 

This implies that, both 1
ˆ ˆ( ) ( )k kf v and f v are odd or even.  

Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are odd, then from (37), we get   

 1

1

3 ˆ ˆ( ) ( ) 2 2 ( ) 2.
4

k

k k nf v f v P x


     
 

  ---- (38) 

But, we have 
1

1 2
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

=  1

22 2 ( ) | 1| ( )n

k k nP P x  

     

1 1
1 2(2 1) 2 2

2 1 ,
7 7

k n
n x

 
   

    
 

 

where the second equality follows since m=2k-1, and the third inequality follows 

since 

12 2
2 ( )

7

n

k nand P 
 

  . 

That is, 

1 1

1

3 3 2 1 1 2 2 3 3ˆ ˆ( ) ( ) 2 2
4 4 7 2 7 4 2

k n
n

k kf v f v x
 



   
          

  
 

1
1 2 3 3(2 ) 8(2 ) 3

2 ( ) 2 ( ) 2
4 7 7 4

k n
k k

n nP P x 


   
      

 
 

1 1
1 2 2 2 3 12 8(2 ) 3

2 ( ) 2 2
7 4 7 7(8) 4

n n
k k

nP x
 

     
        

  
 

1 1
1 2 8(2 11) 8(2 ) 3

2 ( ) 2 2
7 4

n n
k k

nP x
 

    
    

 
 

=

Subcase3 (a) : Suppose, 1
ˆ ˆ( ) ( )k kf v f v  is even. 

This implies that, both 1
ˆ ˆ( ) ( )k kf v and f v are odd or even.  

Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are odd, then from (37), we get   

 1

1

3 ˆ ˆ( ) ( ) 2 2 ( ) 2.
4

k

k k nf v f v P x


     
 

  ---- (38) 

But, we have 
1

1 2
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

=  1

22 2 ( ) | 1| ( )n

k k nP P x  

     

1 1
1 2(2 1) 2 2

2 1 ,
7 7

k n
n x

 
   

    
 

 

where the second equality follows since m=2k-1, and the third inequality follows 

since 

12 2
2 ( )

7

n

k nand P 
 

  . 

That is, 

1 1

1

3 3 2 1 1 2 2 3 3ˆ ˆ( ) ( ) 2 2
4 4 7 2 7 4 2

k n
n

k kf v f v x
 



   
          

  
 

1
1 2 3 3(2 ) 8(2 ) 3

2 ( ) 2 ( ) 2
4 7 7 4

k n
k k

n nP P x 


   
      

 
 

1 1
1 2 2 2 3 12 8(2 ) 3

2 ( ) 2 2
7 4 7 7(8) 4

n n
k k

nP x
 

     
        

  
 

1 1
1 2 8(2 11) 8(2 ) 3

2 ( ) 2 2
7 4

n n
k k

nP x
 

    
    

 
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1
1 2 24(2 ) 88

2 ( ) 2 2
7

n
k k

nP x


   
    

 
 

12 ( ) 2,k

nP x    

where the second inequality follows since 

12 3
( )

7

n

nP
 

 , the third inequality 

follows since 

12 2
5 ( )

7

n

nk and P
 

  , and the sixth inequality follows 

3 5.since n and k   

That is, 1

3 ˆ ˆ( ) ( ) 2
4

k kf v f v 
   
 

12 ( ) 2k

nP x   .   ---- (39) 

The inequality in (38) contradicts the inequality in (39). 

Suppose, both 1
ˆ ˆ( ) ( )k kf v and f v are even, then from (37), we get   

   1

1

3 ˆ ˆ( ) ( ) 2 ( ) 1
4

k

k k nf v f v P x


    
 

.   ---- (40) 

But, we have 
1

1 2
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

=  1

22 2 ( ) | 1| ( )n

k k nP P x  

     

1 1
1 2(2 1) 2 2

2 1
7 7

k n
n x

 
   

    
 

 

13(2 ) 8(2 ) 2
2 ( ) ,

7 7 7

k n
k

nP x


    
 

where the second equality follows since 

m=2k-1, the third inequality follows since 

12 2
2 ( )

7

n

k nand P 
 

  . 
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That is,  

1

1

3 3 3(2 ) 8(2 ) 2ˆ ˆ( ) ( ) 2 ( )
4 4 7 7 7

k n
k

k k nf v f v P x




 
        

 
 

1
1 2 24(2 ) 88

2 ( ) 2 2
7

n
k k

nP x


   
    

 
  

12 ( ) 1,k

nP x    

where the third inequality follows 3 5.since n and k   

That is, 1

3 ˆ ˆ( ) ( )
4

k kf v f v 
  
 

12 ( ) 1k

nP x   .   ---- (41) 

The inequality in (40) contradicts the inequality in (41). 

Subcase3 (b) : If 1
ˆ ˆ( ) ( )k kf v f v  is odd. 

Without loss of generality, let ˆ ( )kf v be odd. Then
 1

ˆ ( )kf v  is even. 

From (37), we get   

 1

1

3 5ˆ ˆ( ) ( ) 2 ( ) 2.
4 4

k

k k nf v f v P x


     
 

  ---- (42) 

But, we have 
1

1 2
ˆ ˆ( ) ( ) 2 ( ) ( )n

k k m nf v f v C P x 

      

=  1

22 2 ( ) | 1| ( )n

k k nP P x  

     

13(2 ) 8(2 ) 2
2 ( )

7 7 7

k n
k

nP x


     , 

where the second equality follows since m=2k-1. That is, 

1

1

3 5 3 3(2 ) 8(2 ) 2 3 5ˆ ˆ( ) ( ) 2 ( )
4 4 4 7 7 7 4 4

k n
k

k k nf v f v P x x




 
           

 
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1
1 2 24(2 ) 88

2 ( ) 2 2
7

n
k k

nP x


   
    

 
 

≥
12 ( ) 2,k

nP x    

where the third inequality follows since n>2 and k>4. 

That is, 1

3 5ˆ ˆ( ) ( )
4 4

k kf v f v 
   
 

 
12 ( ) 2k

nP x   .  ---- (43) 

The inequality in (42) contradicts the inequality in (43). 

 From Subcase3 (a) and Subcase3 (b), we can always send ( )nP x  pebbles to v0 at 

a cost of at most 2
k-1

[ ( )nP x  ] pebbles. Thus, we cover dominate the path Pn. 

Now, we have to cover dominate Cm. In Cm, we have at least 

 1 1

22 ( ) ( ) 2 ( )n k

m n nC P x P x   

    pebbles. We need at most ψ(Cm) 

pebbles to cover dominate Cm. But,  

 1 1

22 ( ) ( ) 2 ( ) ( )n k

m n n mC P x P x C    

      

 1 1

2(2 1) ( ) ( ) 2 ( )n k

m n nC P x P x   

       

 1 1 1

2(2 1) 2 ( ) 1 2 ( ) ( ) (2 1)n k k

k n nP P P x    

        

1 1
1 12(2 1) 2 3

(2 1) 1 2
7 7

k n
n k

 
     

      
   

 

1
1 2(2 ) 11 9(2 1)

2
7 7(16)

n n
k


   

  
 

 

1
1 55(2 ) 165

2 0,
56

n
k


  

  
 
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where the second equality follows since m=2k-1, the third inequality follows since 

12 3
0 ( )

7

n

k nand P 
 

  , the fifth inequality follows since k≥5, and the sixth 

inequality follows 2 4since n and k  . 

Thus, we have enough pebbles to cover dominate Cm and hence we are done. 

Case3.2: Cm contains y<ψ(Cm) pebbles. 

This implies that, PC contains 
1

22 ( ) ( )n

m nC P y 

 
 
pebbles. We use at most 

ψ(Pn-1) pebbles to cover dominate PC. Thus, we have at least 

1

2 12 ( ) ( ) ( )n

m n nC P y P  

    pebbles in PC. We need at most 2
n-1 

[ψ(Cm)-y] 

pebbles from PC to cover dominate the vertices of Cm. But,  

 1 1

2 12 ( ) ( ) ( ) 2 ( )n n

m n n mC P y P C y    

       

=
1

2 12 ( ) ( )n

n ny P y P 

   
 

1 5 7 1
2

7(4) 7

n y
y  

   
 

 

1 21 9
2 0 0,

28

n y
if y  

   
 

 

where the third inequality follows since n≥3. Thus, we can send ψ(Cm)-y pebbles to 

v0 and already Cm contains y pebbles implies that Cm contains ψ(Cm) pebbles and we 

are done. 

So, 
1

2( ( , )) 2 ( ) ( )n

m nL m n C P  

  . 

Therefore, 
1

2( ( , )) 2 ( ) ( )n

m nL m n C P  

  , if αk=0. 
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Hence, 

1

1

1

2

2 ( ) ( ), 1
( ( , ))

2 ( ) ( ), 0 2

n

m n k

n

m n k

C P if
L m n

C P if or

  


  









  
 

 

, where m=2k-1 and 

k-2αk(mod 3).                      
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